首页
关于
友情链接
Search
1
记一次openJDK下使用arthas排查问题
716 阅读
2
K8S pod内存告警分析
341 阅读
3
使用top命令分析java程序占用内存
328 阅读
4
甜狗的故事
144 阅读
5
Grafana安装
142 阅读
默认分类
运维-笔记
K8s
DevOps
甜狗日记
工作笔记
登录
Search
标签搜索
Docker
Linux
nginx
prometheus
SpringBoot
Grafana
Zabbix
甜狗日记
云计算
亦涵爱吃肉
累计撰写
17
篇文章
累计收到
5
条评论
首页
栏目
默认分类
运维-笔记
K8s
DevOps
甜狗日记
工作笔记
页面
关于
友情链接
搜索到
17
篇与
亦涵
的结果
2022-08-16
运维一定要懂的Linux高级命令---持续更新
一、实用的 xargs 命令xargs 这个命令比较方便实用的。通过这个命令,将命令输出的结果作为参数传递给另一个命令。例如,想找出某个路径下以 .conf 结尾的文件,并将这些文件进行分类,普通的做法是先将以 .conf 结尾的文件先找出来,然后输出到一个文件中,接着 cat 这个文件,并使用 file 文件分类命令去对输出的文件进行分类。这个普通的方法还的确是略显麻烦,那么这个时候 xargs 命令就派上用场了。例1:找出 / 目录下以 .conf 结尾的文件,并进行文件分类find / -name *.conf -type f -print | xargs filexargs 后面不仅仅可以加文件分类的命令,你还可以加其他的很多命令,比如说实在一点的tar命令,你可以使用 find 命令配合 tar 命令,将指定路径的特殊文件使用 find 命令找出来,然后配合 tar 命令将找出的文件直接打包,命令如下:find / -name *.conf -type f -print | xargs tar cjf test.tar.gz二、找出当前系统内存使用量较高的进程在很多运维的时候,我们发现内存耗用较为严重,那么怎么样才能找出内存消耗的进程排序呢?命令:ps -aux | sort -rnk 4 | head -20输出的第4列就是内存的耗用百分比。最后一列就是相对应的进程。三、找出当前系统CPU使用量较高的进程命令:ps -aux | sort -rnk 3 | head -20输出的第3列为 CPU 的耗用百分比,最后一列就是对应的进程。我想大家应该也发现了,sort 命令后的3、4其实就是代表着第3列进行排序、第4列进行排序。三、查找80端口请求数最高的前20个IP有时候业务的请求量突然上去了,那么这个时候我们可以查看下请求来源IP情况,如果是集中在少数IP上的,那么可能是存在行为,我们使用防火墙就可以进行封禁。命令如下:netstat -anlp|grep 80|grep tcp|awk '{print $5}'|awk -F: '{print $1}'|sort|uniq -c|sort -nr|head -n20
2022年08月16日
130 阅读
1 评论
0 点赞
2022-08-16
SpringBoot日志基本查看
1. 日志的作用日志是程序的重要组成部分,在程序报错的时候,如果我们不看日志,是很难排查出错误的,除非你真的是很有经验.所以日志最主要的作用就是排除和定位问题.日志提供的功能:记录⽤户登录⽇志,⽅便分析⽤户是正常登录还是恶意⽤户。记录系统的操作⽇志,⽅便数据恢复和定位操作⼈。记录程序的执⾏时间,⽅便为以后优化程序提供数据⽀持2.使用日志对象提供的方法打印日志import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.springframework.stereotype.Controller; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.ResponseBody; @Controller @ResponseBody public class UserController { //1. 先得到日志对象(来自 slf4j) private static final Logger log = LoggerFactory.getLogger(UserController.class); //设置当前的类型 @RequestMapping("/sayhi") public void sayHi(){ //2. 使用日志对象提供的打印方法进行日志打印 log.trace("我是 trace"); log.debug("我是 debug"); log.info("我是 info"); log.warn("我是 warn"); log.error("我是 error"); } }有些没打印,因为他只会打印跟他同级别的或者比他级别高的日志,他这里默认是 info 级别.3.日志级别分类日志级别分为:trace: 微量,少许的意思(级别最低)debug: 调试日志info: 普通信息日志warn: 警告日志error: 错误日志fatal: 致命的日志(系统输出的日志,不能自定义打印)日志级别的顺序:越往上接收到的消息就越少。注意:fatal 是不支持打印的,因为你程序都崩溃了,你还打印个锤子。。。而且, 日志对象 也没有提供 关于 fatal 的 方法、全局日志级别
2022年08月16日
141 阅读
2 评论
0 点赞
2022-08-16
快速安装 prometheus 监控节点
本教程基于AlpineLinux,请注意将apk相关命令替换为对应系统的包命令,比如apt、yum等安装监控服务apk add prometheus-node-exporter rc-update add node-exporter default # 配置节点 ARGS="--collector.processes --web.listen-address=:2910 --web.config=/etc/prometheus/web-config.yml" sed -i "s#ARGS=\"\"#ARGS=\"$ARGS\"#" /etc/conf.d/node-exporter # 授权配置,请注意修改密码 mkdir -p /etc/prometheus cat <<EOF >/etc/prometheus/web-config.yml basic_auth_users: report:LPPRfab4H8npBbKkf1A9YAFdHVwfi EOF # 自动启动 rc-service node-exporter start卸载监控程序# 停止服务 rc-update del node-exporter default rc-service node-exporter stop # 删除服务 apk del --purge prometheus-node-exporter deluser prometheus # 清理记录 rm -rf /etc/prometheus /var/lib/prometheus /var/log/prometheus
2022年08月16日
116 阅读
1 评论
0 点赞
2022-08-16
Nginx 实现冷热文件分区读取
10.10.1.1 为热文件服务器,存储一个月内上传的文件10.10.2.2 为冷文件服务器,存储上传超过一个月的文件upstream host_s1 { server 10.10.1.1:443; server 10.10.2.2:443 backup; } server { listen 80; server_name mi.axyyh.com; location / { proxy_pass http://host_mi; proxy_connect_timeout 5s; proxy_next_upstream_tries 2; proxy_next_upstream_timeout 5s; proxy_next_upstream error timeout http_404 http_502; } }
2022年08月16日
123 阅读
0 评论
0 点赞
2022-08-11
Java 服务线上问题排查思路与工具使用
Java 服务常见线上问题所有 Java 服务的线上问题从系统表象来看归结起来总共有四方面:CPU、内存、磁盘、网络。例如 CPU 使用率峰值突然飚高、内存溢出(泄露)、磁盘满了、网络流量异常、FullGC 等等问题。基于这些现象我们可以将线上问题分成两大类: 系统异常、业务服务异常。系统异常常见的系统异常现象包括: CPU 占用率过高、CPU上下文切换频率次数较高、磁盘满了、磁盘 I/O 过于频繁、网络流量异常(连接数过多)、系统可用内存长期处于较低值(导致 oom killer)等等。这些问题可以通过 top(cpu)、free(内存)、df(磁盘)、dstat(网络流量)、pstack、vmstat、strace(底层系统调用)等工具获取系统异常现象数据。此外,如果对系统以及应用进行排查后,均未发现异常现象的根本原因,那么也有可能是因为外部基础设施 IAAS 平台所引发的问题。例如运营商网络或者云服务提供商偶尔可能也会发生一些故障问题,你的引用只有某个区域如广东用户访问系统时发生服务不可用现象,那么极有可能是这些原因导致的。今天,我司部署在阿里云华东地域的业务系统中午时分突然不能为广东地区用户提供正常服务,对系统进行各种排查均为发现任何问题。最后,通过查询阿里云公告得知原因是"广东地区电信线路访问华东地区互联网资源(包含阿里云华东1地域)出现网络丢包或者延迟增大的异常情况"。业务服务异常常见的业务服务异常现象包括: PV 量过高、服务调用耗时异常、线程死锁、多线程并发问题、频繁进行 Full GC、异常安全攻击扫描等。问题定位我们一般会采用排除法,从外部排查到内部排查的方式来定位线上服务问题。首先我们要排除其他进程(除主进程之外)可能引起的故障问题 其次排除业务应用可能引起的故障问题 最后可以考虑是否为运营商或者云服务提供商所引起的故障定位流程系统异常排查流程业务应用排查流程Linux 常用的性能分析工具Linux 常用的性能分析工具使用包括 : top(cpu)、free(内存)、df(磁盘)、dstat(网络流量)、pstack、vmstat、strace(底层系统调用)等。CPUCPU 是系统重要的监控指标,能够分析系统的整体运行状况。监控指标一般包括运行队列、CPU使用率和上下文切换等。top命令是Linux下常用的 CPU 性能分析工具,能够实时显示系统中各个进程的资源占用状况,常用于服务端性能分析。 top 命令显示了各个进程 CPU 使用情况,一般 CPU 使用率从高到低排序展示输出。其中 Load Average 显示最近1分钟、5分钟和15分钟的系统平均负载,上图各值为2.46,1.96,1.99。 我们一般会关注 CPU 使用率最高的进程,正常情况下就是我们的应用主进程。第七行以下:各进程的状态监控。PID : 进程id USER : 进程所有者 PR : 进程优先级 NI : nice值。负值表示高优先级,正值表示低优先级 VIRT : 进程使用的虚拟内存总量,单位kb。VIRT=SWAP+RES RES : 进程使用的、未被换出的物理内存大小,单位kb。RES=CODE+DATA SHR : 共享内存大小,单位kb S : 进程状态。D=不可中断的睡眠状态 R=运行 S=睡眠 T=跟踪/停止 Z=僵尸进程 %CPU : 上次更新到现在的CPU时间占用百分比 %MEM : 进程使用的物理内存百分比 TIME+ : 进程使用的CPU时间总计,单位1/100秒 COMMAND : 进程名称内存内存是排查线上问题的重要参考依据,内存问题很多时候是引起 CPU 使用率较高的见解因素。系统内存:free 是显示的当前内存的使用,-m 的意思是M字节来显示内容。部分参数说明: total 内存总数: 3790Mused 已经使用的内存数: 1880Mfree 空闲的内存数: 118Mshared 当前已经废弃不用,总是0buffers Buffer 缓存内存数: 1792M磁盘磁盘满了很多时候会连带引起系统服务不可用等问题df -hdu -m /path网络dstat 命令可以集成了 vmstat、iostat、netstat 等等工具能完成的任务。dstat -c cpu情况 -d 磁盘读写 -n 网络状况 -l 显示系统负载 -m 显示形同内存状况 -p 显示系统进程信息 -r 显示系统IO情况其它vmstatvmstat 2 10 -tvmstat 是 Virtual Meomory Statistics(虚拟内存统计)的缩写, 是实时系统监控工具。该命令通过使用 knlist 子程序和 /dev/kmen 伪设备驱动器访问这些数据,输出信息直接打印在屏幕。使用 vmstat 2 10 -t命令,查看 io 的情况 (第一个参数是采样的时间间隔数单位是秒,第二个参数是采样的次数)。JVM 定位问题工具在 JDK 安装目录的 bin 目录下默认提供了很多有价值的命令行工具。每个小工具体积基本都比较小,因为这些工具只是 jdklibtools.jar 的简单封装。其中,定位排查问题时最为常用命令包括:jps(进程)、jmap(内存)、jstack(线程)、jinfo(参数)等。jps:查询当前机器所有JAVA进程信息jmap:输出某个 Java 进程内存情况(如产生那些对象及数量等)jstack:打印某个 Java 线程的线程栈信息jinfo:用于查看 jvm 的配置参数jps 命令jps 用于输出当前用户启动的所有进程 ID,当线上发现故障或者问题时,能够利用 jps 快速定位对应的 Java 进程 ID。jps -l -m -m -l -l参数用于输出主启动类的完整路径当然,我们也可以使用 Linux 提供的查询进程状态命令,例如:ps -ef | grep tomcat我们也能快速获取 Tomcat 服务的进程 id。jmap 命令jmap -heap pid 输出当前进程JVM堆新生代、老年代、持久代等请情况,GC使用的算法等信息 jmap -histo:live {pid} | head -n 10 输出当前进程内存中所有对象包含的大小 jmap -dump:format=b,file=/usr/local/logs/gc/dump.hprof {pid} 以二进制输出档当前内存的堆情况,然后可以导入MAT等工具进行JMap(Java Memory Map)可以输出所有内存中对象的工具,甚至可以将 VM 中的 heap,以二进制输出成文本。jmap -heap pid:jmap -heap pid 输出当前进程JVM堆新生代、老年代、持久代等请情况,GC使用的算法等信息jmap 可以查看 JVM 进程的内存分配与使用情况,使用 的 GC 算法等信息。jmap -histo:live {pid} | head -n 10:jmap -histo:live {pid} | head -n 10 输出当前进程内存中所有对象包含的大小输出当前进程内存中所有对象实例数(instances)和大小(bytes),如果某个业务对象实例数和大小存在异常情况,可能存在内存泄露或者业务设计方面存在不合理之处。jmap -dump:jmap -dump:format=b,file=/usr/local/logs/gc/dump.hprof {pid} -dump:formate=b,file= 以二进制输出当前内存的堆情况至相应的文件,然后可以结合 MAT 等内存分析工具深入分析当前内存情况。一般我们要求给 JVM 添加参数 -XX:+Heap Dump On Out Of Memory Error OOM 确保应用发生 OOM 时 JVM 能够保存并 dump 出当前的内存镜像。当然如果你决定手动 dump 内存时,dump 操作占据一定 CPU 时间片、内存资源、磁盘资源等,因此会带来一定的负面影响。此外,dump 的文件可能比较大,一般我们可以考虑使用zip命令对文件进行压缩处理,这样在下载文件时能减少带宽的开销。在下载 dump 文件完成之后,由于 dump 文件较大可将 dump 文件备份至制定位置或者直接删除,以释放磁盘在这块的空间占用。jstack 命令printf '%x\n' tid --> 10进制至16进制线程ID(navtive线程) %d 10进制 jstack pid | grep tid -C 30 --color ps -mp 8278 -o THREAD,tid,time | head -n 40某 Java 进程 CPU 占用率高,我们想要定位到其中 CPU 占用率最高的线程。(1) 利用 top 命令可以查出占 CPU 最高的线程 pidtop -Hp {pid}(2) 占用率最高的线程 ID 为 6900,将其转换为16进制形式(因为 java native 线程以16进制形式输出)printf '%x\n' 6900(3) 利用 jstack 打印出 Java 线程调用栈信息jstack 6418 | grep '0x1af4' -A 50 --color内存分析工具 MAT什么是 MAT?MAT(Memory Analyzer Tool),一个基于 Eclipse 的内存分析工具,是一个快速、功能丰富的 JAVA heap 分析工具,它可以帮助我们查找内存泄漏和减少内存消耗。使用内存分析工具从众多的对象中进行分析,快速的计算出在内存中对象的占用大小,看看是谁阻止了垃圾收集器的回收工作,并可以通过报表直观的查看到可能造成这种结果的对象。右侧的饼图显示当前快照中最大的对象。单击工具栏上的柱状图,可以查看当前堆的类信息,包括类的对象数量、浅堆(Shallow heap)、深堆(Retained Heap)。浅堆表示一个对象结构所占用内存的大小。深堆表示一个对象被回收后,可以真实释放的内存大小。支配树(The Dominator Tree): 列出了堆中最大的对象,第二层级的节点表示当被第一层级的节点所引用到的对象,当第一层级对象被回收时,这些对象也将被回收。这个工具可以帮助我们定位对象间的引用情况,垃圾回收时候的引用依赖关系 Path to GC Roots 被JVM持有的对象,如当前运行的线程对象,被systemclass loader加载的对象被称为GC Roots, 从一个对象到GC Roots的引用链被称为Path to GC Roots, 通过分析Path to GC Roots可以找出JAVA的内存泄露问题,当程序不在访问该对象时仍存在到该对象的引用路径。 日志分析GC 日志分析GC 日志详细分析Java 虚拟机 GC 日志是用于定位问题重要的日志信息,频繁的 GC 将导致应用吞吐量下降、响应时间增加,甚至导致服务不可用-XX:+PrintGCDetails -XX:+PrintGCDateStamps -Xloggc:/usr/local/gc/gc.log -XX:+UseConcMarkSweepGC我们可以在 Java 应用的启动参数中增加 -XX:+PrintGCDetails 可以输出 GC 的详细日志,例外还可以增加其他的辅助参数,如 -Xloggc 制定 GC 日志文件地址。如果你的应用还没有开启该参数,下次重启时请加入该参数。上图为线上某应用在平稳运行状态下的GC日志截图。2017-12-29T18:25:22.753+0800: 73143.256: [GC2017-12-29T18:25:22.753+0800: 73143.257: [ParNew: 559782K->1000K(629120K), 0.0135760 secs] 825452K->266673K(2027264K), 0.0140300 secs] [Times: user=0.02 sys=0.00, real=0.02 secs] 解析说明: [2017-12-29T18:25:22.753+0800: 73143.256] : 自JVM启动73143.256秒时发生本次GC. [ParNew: 559782K->1000K(629120K), 0.0135760 secs] : 对新生代进行的GC,使用ParNew收集器,559782K是新生代回收前的大小,1000K是新生代回收后大小,629120K是当前新生代分配的内存总大小, 0.0135760 secs表示本次新生代回收耗时 0.0135760秒 [825452K->266673K(2027264K), 0.0140300 secs]:825452K是回收堆内存大小,266673K是回收堆之后内存大小,2027264K是当前堆内存总大小,0.0140300 secs表示本次回收共耗时0.0140300秒 [Times: user=0.02 sys=0.00, real=0.02 secs] : 用户态耗时0.02秒,系统态耗时0.00,实际耗时0.02秒无论是 minor GC 或者是 Full GC,我们主要关注 GC 回收实时耗时, 如 real=0.02secs,即 stop the world 时间,如果该时间过长,则严重影响应用性能。CMS GC 日志分析Concurrent Mark Sweep(CMS)是老年代垃圾收集器,从名字(Mark Sweep)可以看出,CMS 收集器就是“标记-清除”算法实现的,分为六个步骤:初始标记(STW initial mark)并发标记(Concurrent marking)并发预清理(Concurrent precleaning)重新标记(STW remark)并发清理(Concurrent sweeping)并发重置(Concurrent reset)其中初始标记(STW initial mark) 和 重新标记(STW remark)需要“Stop the World”。初始标记 :在这个阶段,需要虚拟机停顿正在执行的任务,官方的叫法 STW(Stop The Word)。这个过程从垃圾回收的"根对象"开始,只扫描到能够和"根对象"直接关联的对象,并作标记。所以这个过程虽然暂停了整个 JVM,但是很快就完成了。并发标记 :这个阶段紧随初始标记阶段,在初始标记的基础上继续向下追溯标记。并发标记阶段,应用程序的线程和并发标记的线程并发执行,所以用户不会感受到停顿。并发预清理 :并发预清理阶段仍然是并发的。在这个阶段,虚拟机查找在执行并发标记阶段新进入老年代的对象(可能会有一些对象从新生代晋升到老年代, 或者有一些对象被分配到老年代)。通过重新扫描,减少下一个阶段"重新标记"的工作,因为下一个阶段会 Stop The World。重新标记 :这个阶段会暂停虚拟机,收集器线程扫描在 CMS 堆中剩余的对象。扫描从"跟对象"开始向下追溯,并处理对象关联。并发清理 :清理垃圾对象,这个阶段收集器线程和应用程序线程并发执行。并发重置 :这个阶段,重置 CMS 收集器的数据结构,等待下一次垃圾回收。CMS 使得在整个收集的过程中只是很短的暂停应用的执行,可通过在 JVM 参数中设置 -XX:UseConcMarkSweepGC 来使用此收集器,不过此收集器仅用于 old 和 Perm(永生)的对象收集。CMS 减少了 stop the world 的次数,不可避免地让整体 GC 的时间拉长了。Full GC 的次数说的是 stop the world 的次数,所以一次 CMS 至少会让 Full GC 的次数+2,因为 CMS Initial mark 和 remark 都会 stop the world,记做2次。而 CMS 可能失败再引发一次 Full GC。上图为线上某应用在进行 CMS GC 状态下的 GC 日志截图。2017-11-02T09:27:03.989+0800: 558115.552: [GC [1 CMS-initial-mark: 1774783K(1926784K)] 1799438K(2068800K), 0.0123430 secs] [Times: user=0.01 sys=0.01, real=0.02 secs] 2017-11-02T09:27:04.001+0800: 558115.565: [CMS-concurrent-mark-start] 2017-11-02T09:27:04.714+0800: 558116.277: [CMS-concurrent-mark: 0.713/0.713 secs] [Times: user=1.02 sys=0.03, real=0.71 secs] 2017-11-02T09:27:04.714+0800: 558116.277: [CMS-concurrent-preclean-start] 2017-11-02T09:27:04.722+0800: 558116.285: [CMS-concurrent-preclean: 0.008/0.008 secs] [Times: user=0.01 sys=0.00, real=0.01 secs] 2017-11-02T09:27:04.722+0800: 558116.286: [CMS-concurrent-abortable-preclean-start] 2017-11-02T09:27:04.836+0800: 558116.399: [GC2017-11-02T09:27:04.836+0800: 558116.400: [ParNew: 138301K->6543K(142016K), 0.0155540 secs] 1913085K->1781327K(2068800K), 0.0160610 secs] [Times: user=0.03 sys=0.01, real=0.02 secs] 2017-11-02T09:27:05.005+0800: 558116.569: [CMS-concurrent-abortable-preclean: 0.164/0.283 secs] [Times: user=0.46 sys=0.02, real=0.28 secs] 2017-11-02T09:27:05.006+0800: 558116.570: [GC[YG occupancy: 72266 K (142016 K)]2017-11-02T09:27:05.006+0800: 558116.570: [Rescan (parallel) , 0.2523940 secs]2017-11-02T09:27:05.259+0800: 558116.822: [weak refs processing, 0.0011240 secs]2017-11-02T09:27:05.260+0800: 558116.823: [scrub string table, 0.0028570 secs] [1 CMS-remark: 1774783K(1926784K)] 1847049K(2068800K), 0.2566410 secs] [Times: user=0.14 sys=0.00, real=0.26 secs] 2017-11-02T09:27:05.265+0800: 558116.829: [CMS-concurrent-sweep-start] 2017-11-02T09:27:05.422+0800: 558116.986: [GC2017-11-02T09:27:05.423+0800: 558116.986: [ParNew: 120207K->2740K(142016K), 0.0179330 secs] 1885446K->1767979K(2068800K), 0.0183340 secs] [Times: user=0.03 sys=0.01, real=0.02 secs] 2017-11-02T09:27:06.240+0800: 558117.804: [GC2017-11-02T09:27:06.240+0800: 558117.804: [ParNew: 116404K->3657K(142016K), 0.0134680 secs] 1286444K->1173697K(2068800K), 0.0138460 secs] [Times: user=0.03 sys=0.00, real=0.01 secs] 2017-11-02T09:27:06.966+0800: 558118.530: [GC2017-11-02T09:27:06.966+0800: 558118.530: [ParNew: 117321K->2242K(142016K), 0.0135210 secs] 738838K->623759K(2068800K), 0.0140130 secs] [Times: user=0.03 sys=0.00, real=0.02 secs] 2017-11-02T09:27:07.144+0800: 558118.708: [CMS-concurrent-sweep: 1.820/1.879 secs] [Times: user=2.88 sys=0.14, real=1.88 secs] 2017-11-02T09:27:07.144+0800: 558118.708: [CMS-concurrent-reset-start] 2017-11-02T09:27:07.149+0800: 558118.713: [CMS-concurrent-reset: 0.005/0.005 secs] [Times: user=0.01 sys=0.00, real=0.00 secs] 如果你已掌握 CMS 的垃圾收集过程,那么上面的 GC 日志你应该很容易就能看的懂,这里我就不详细展开解释说明了。此外 CMS 进行垃圾回收时也有可能会发生失败的情况。异常情况有:伴随 prommotion failed,然后 Full GC:[prommotion failed:存活区内存不足,对象进入老年代,而此时老年代也仍然没有内存容纳对象,将导致一次Full GC]伴随 concurrent mode failed,然后 Full GC:[concurrent mode failed:CMS回收速度慢,CMS完成前,老年代已被占满,将导致一次Full GC]频繁 CMS GC:[内存吃紧,老年代长时间处于较满的状态]
2022年08月11日
119 阅读
0 评论
0 点赞
1
2
3
4